Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 12(12)2022 12 17.
Article in English | MEDLINE | ID: mdl-36551320

ABSTRACT

Mediterranean Spotted Fever (MSF) is one of the most common spotted fever Rickettsioses. Most cases of MSF follow a benign course, with a minority of cases being fatal. The severity of the infection depends on bacterial virulence, dose and host factors such as effective immune response and genetic background. Herein, we reported data on typing by competitive allele-specific PCR of functionally relevant polymorphisms of genes coding for MyD88 adapter-like (Mal/TIRAP) protein (rs8177374), interleukin(IL)-1 cluster (IL-1A rs1800587, IL-1B rs16944 and rs1143634) and IL-18 (rs187238), which might be crucial for an efficient immune response. The results enlighten the role that IL-1 gene cluster variants might play in susceptibility against Rickettsia conorii infection. In particular, the IL-1A rs1800587TT genotype was significantly increased in patients alone and combined in a haplotype composed by minor alleles rs1800587T, rs16944A and rs1143634A. This result was confirmed using the decision tree heuristic approach. Using this methodology, IL-1A rs1800587TT genotype was the better discrimination key among MSF patients and controls. In addition, the IL-1 gene cluster SNP genotypes containing minor alleles and IL-18 rs187238G positive genotypes were found as associated with risk of severe complications such as sepsis, septic shock, acute respiratory distress syndrome and coma. In conclusion, these data suggest that the evaluation of IL-1A, IL-1B and IL-18 gene SNPs can add useful information on the clinical course of patients affected by Mediterranean Spotted Fever, even if further confirmatory studies will be necessary.


Subject(s)
Boutonneuse Fever , Humans , Boutonneuse Fever/genetics , Disease Progression , Gene Frequency , Genotype , Interleukin-18/genetics , Interleukin-1alpha/genetics , Interleukin-1beta/genetics
2.
Genes (Basel) ; 13(2)2022 01 25.
Article in English | MEDLINE | ID: mdl-35205271

ABSTRACT

Chronic kidney disease (CKD) is characterized by an increased risk of kidney failure and end-stage renal disease (ESRD). Aging and comorbidities as cardiovascular diseases, metabolic disorders, infectious diseases, or tumors, might increase the risk of dialysis. In addition, genetic susceptibility factors might modulate kidney damage evolution. We have analyzed, in a group of ESRD patients and matched controls, a set of SNPs of genes (Klotho rs577912, rs564481, rs9536314; FGF23 rs7955866; IGF1 rs35767; TNFA rs1800629; IL6 rs1800795; MIF rs755622, rs1007888) chosen in relation to their possible involvement with renal disease and concomitant pathologies. Analysis of the raw data did indicate that IL6 rs180795 and MIF rs755622 SNPs might be markers of genetic susceptibility to ESRD. In particular, the C positive genotypes of MIF rs755622, (dominant model) seem to be an independent risk factor for ESDR patients (data adjusted for age, gender, and associated pathologies). Stratifying results according to age MIF rs755622 C positive genotype frequencies are increased in both the two age classes considered (<59 and ≥59-year-old subjects). Analyses of data according to gender allowed us to observe that ESRD women shoved a significantly reduced frequency of genotypes bearing IL6 rs180795 C allele. In addition, MIF rs755622 might interact with diabetes or hypercholesterolemia in increasing susceptibility to ESRD. In conclusion, our data indicate that some polymorphisms involved in the regulation of both renal function and inflammatory response can influence the evolution of chronic kidney disease and suggest that the modulation of the activities of these and other genes should also be considered as therapeutic targets on to intervene with innovative therapies.


Subject(s)
Interleukin-6 , Kidney Failure, Chronic , Macrophage Migration-Inhibitory Factors , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Interleukin-6/genetics , Intramolecular Oxidoreductases/genetics , Kidney/physiology , Kidney Failure, Chronic/genetics , Macrophage Migration-Inhibitory Factors/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics
3.
Biomolecules ; 11(7)2021 06 25.
Article in English | MEDLINE | ID: mdl-34202072

ABSTRACT

BACKGROUND: Previous studies have demonstrated that polymorphisms involved in immune genes can affect the risk, pathogenesis, and outcome of thoracic ascending aortic aneurysms (TAAA). Here, we explored the potential associations of five functional promoter polymorphisms in interleukin-6 (IL-6), IL-1B, IL-1A, IL-18, and Tumor necrosis factor (TNF)A genes with TAAA. METHODS: 144 TAAA patients and 150 age/gender matched controls were typed using KASPar assays. Effects on telomere length and levels of TAAA related histopathological and serological markers were analyzed. RESULTS: Significant associations with TAAA risk were obtained for IL-6 rs1800795G>C and IL-1B rs16944C>T SNPs. In addition, the combined rs1800795C/rs16944T genotype showed a synergic effect on TAAA pathogenesis and outcome. The combined rs1800795C/rs16944T genotype was significantly associated with: (a) higher serum levels of both cytokines and MMP-9 and -2; (b) a significant CD3+CD4+CD8+ CD68+CD20+ cell infiltration in aorta aneurysm tissues; (c) a significant shorter telomere length and alterations in telomerase activity. Finally, it significantly correlated with TAAA aorta tissue alterations, including elastic fragmentation, medial cell apoptosis, cystic medial changes, and MMP-9 levels. CONCLUSIONS: the combined rs1800795C/rs16944T genotype appears to modulate TAAA risk, pathogenesis, and outcome, and consequently can represent a potential predictive and prognostic TAAA biomarker for individual management, implementation of innovative treatments, and selection of the more proper surgical timing and approaches.


Subject(s)
Aortic Aneurysm, Thoracic/diagnosis , Aortic Aneurysm, Thoracic/genetics , Cytokines/genetics , Interleukin-1beta/genetics , Interleukin-6/genetics , Polymorphism, Single Nucleotide/genetics , Aged , Aortic Aneurysm, Thoracic/metabolism , Biomarkers/metabolism , Cytokines/metabolism , Female , Humans , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Male , Prognosis
4.
Mech Ageing Dev ; 195: 111461, 2021 04.
Article in English | MEDLINE | ID: mdl-33600833

ABSTRACT

The research on neurodegenerative diseases (NeuroDegD) has been traditionally focused on later life stages. There is now an increasing evidence, that they may be programmed during early development. Here, we propose that NeuroDegD are the result of the complex process of imprinting on fetal hemogenic endothelium, from which the microglial cells make to origin. The central role of placenta and epigenetic mechanisms (methylation of DNA, histone modifications and regulation by non-coding RNAs) in mediating the short and long-term effects has been also described. Precisely, it reports their role in impacting plasticity and memory of microglial cells. In addition, we also underline the necessity of further studies for clearing all mechanisms involved and developing epigenetic methods for identifying potential targets as biomarkers, and for developing preventive measures. Such biomarkers might be used to identify individuals at risk to NeuroDegD. Finally, the sex dependence of fetal programming process has been discussed. It might justify the sex differences in the epidemiologic, imaging, biomarkers, and pathology studies of these pathologies. The discovery of related mechanisms might have important clinical implications in both the etiology of disorders and the management of pregnant women for encouraging healthy long-term outcomes for their children, and future generations. Impending research on the mechanisms related to transgenerational transmission of prenatal stress might consent the development and application of therapies and/or intervention strategies for these disorders in humans.


Subject(s)
Epigenesis, Genetic , Fetal Development/physiology , Hemangioblasts/physiology , Microglia/physiology , Neurodegenerative Diseases , Biological Variation, Individual , Biomarkers/analysis , Cell Plasticity , Gene Expression Regulation, Developmental , Humans , Molecular Imprinting , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/prevention & control , Risk Assessment , Sex Characteristics
5.
Ageing Res Rev ; 67: 101299, 2021 05.
Article in English | MEDLINE | ID: mdl-33607290

ABSTRACT

Like other infectious diseases, COVID-19 shows a clinical outcome enormously variable, ranging from asymptomatic to lethal. In Italy, like in other countries, old male individuals, with one or more comorbidity, are the most susceptible group, and show, consequently, the highest mortality, and morbidity, including lethal respiratory distress syndrome, as the most common complication. In addition, another extraordinary peculiarity, that is a surprising resistance to COVID-19, characterizes some Italian nonagenarians/centenarians. Despite having the typical COVID-19 signs and/or symptoms, such exceptional individuals show a surprising tendency to recover from illness and complications. On the other hand, long-lived people have an optimal performance of immune system related to an overexpression of anti-inflammatory variants in immune/inflammatory genes, as demonstrated by our and other groups. Consequently, we suggest long-lived people as an optimal model for detecting genetic profiles associated with the susceptibility and/or protection to COVID-19, to utilize as potential pharmacological targets for preventing or reducing viral infection in more vulnerable individuals.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Aged, 80 and over , Humans , Immune System , Longevity , Male , SARS-CoV-2 , Severe Acute Respiratory Syndrome/epidemiology
6.
Genes (Basel) ; 11(12)2020 11 28.
Article in English | MEDLINE | ID: mdl-33260695

ABSTRACT

BACKGROUND: Congenital heart defects (CHDs) are present in about 40-60% of newborns with Down syndrome (DS). Patients with DS can also develop acquired cardiac disorders. Mouse models suggest that a critical 3.7 Mb region located on human chromosome 21 (HSA21) could explain the association with CHDs. This region includes a cluster of genes (IFNAR1, IFNAR2, IFNGR2, IL10RB) encoding for interferon receptors (IFN-Rs). Other genes located on different chromosomes, such as the vascular endothelial growth factor A (VEGFA), have been shown to be involved in cardiac defects. So, we investigated the association between single nucleotide polymorphisms (SNPs) in IFNAR2, IFNGR2, IL10RB and VEGFA genes, and the presence of CHDs or acquired cardiac defects in patients with DS. METHODS: Individuals (n = 102) with DS, and age- and gender-matched controls (n = 96), were genotyped for four SNPs (rs2229207, rs2834213, rs2834167 and rs3025039) using KASPar assays. RESULTS: We found that the IFNGR2 rs2834213 G homozygous genotype and IL10RB rs2834167G-positive genotypes were more common in patients with DSand significantly associated with heart disorders, while VEGFA rs3025039T-positive genotypes (T/*) were less prevalent in patients with CHDs. CONCLUSIONS: We identified some candidate risk SNPs for CHDs and acquired heart defects in DS. Our data suggest that a complex architecture of risk alleles with interplay effects may contribute to the high variability of DS phenotypes.


Subject(s)
Chromosomes, Human, Pair 21/genetics , Down Syndrome/genetics , Heart Defects, Congenital/genetics , Multigene Family , Polymorphism, Single Nucleotide , Receptors, Interferon/genetics , Vascular Endothelial Growth Factor A/genetics , Adolescent , Adult , Female , Humans , Male
7.
Int J Mol Sci ; 20(23)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795333

ABSTRACT

The need to facilitate the complex management of cardiometabolic diseases (CMD) has led to the detection of many biomarkers, however, there are no clear explanations of their role in the prevention, diagnosis or prognosis of these diseases. Molecules associated with disease pathways represent valid disease surrogates and well-fitted CMD biomarkers. To address this challenge, data from multi-omics types (genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, and nutrigenomics), from human and animal models, have become available. However, individual omics types only provide data on a small part of molecules involved in the complex CMD mechanisms, whereas, here, we propose that their integration leads to multidimensional data. Such data provide a better understanding of molecules related to CMD mechanisms and, consequently, increase the possibility of identifying well-fitted biomarkers. In addition, the application of gender medicine also helps to identify accurate biomarkers according to gender, facilitating a differential CMD management. Accordingly, the impact of gender differences in CMD pathophysiology has been widely demonstrated, where gender is referred to the complex interrelation and integration of sex (as a biological and functional marker of the human body) and psychological and cultural behavior (due to ethnical, social, and religious background). In this review, all these aspects are described and discussed, as well as potential limitations and future directions in this incipient field.


Subject(s)
Cardiovascular Diseases/diagnosis , Computational Biology/methods , Metabolic Diseases/diagnosis , Precision Medicine/methods , Animals , Biomarkers/analysis , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...